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SYNOPSIS

Electromagnetic fields in inhomogeneous and dissipative

media have attracted considerable attention. Such media are cha-

racterized in general by a dielectric constant e and a conducti

vity O that vary with the coordinates x, y, z. Examples are to

be found in the field of inhomogeneous plasma, in underwater

communication, in E. M. lenses and in a study of antennas used

as probes in such media.

This rese1rc Io restricted to radially strarified media

With ee (r), a a(r), where r is the radial distance in sphe-

rical coordinates. In these coordinates Maxwell's equations are

Still separable if the complex dielectric factor t = e -ia/w

- Eof(r) depends only on r. The angular equation is not affected.

However, the radial equation is no longer the spherical Bessel

equation of the homogeneous case. Its coefficients depend on the,
"stratification function" f(r) and contain additional singulari-

ties in the complex r-plane. The biconical antenna is the most

general problem that can be encountered; it requires the solution

of the complicated radial equation from r=O to rco. The theory,

nevertheless, is readily applicable to all electromagnetic

problems arising in the presence of such media.

For the stratification function f(r) the following form

was considered: f(r) (r+a)/(r+b), where a and b are constants,

in general complex. Even this simple dependence introduces two

new finite singularities in the radial differential equation
beyond the usual singularities at r-O and ro , F.urthermore, it

has been proved that the analysis can readily be extended to more

general types of f(r).

The antenna problem requires the analytical solution of the

radial wave equation inside and outside the antenna and the

matching of the E. M. fields across the spherical surface
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containing the antenna. Series solutions R 1(x), R2(x) around x=O

and asymptotic solutions R3 (x), R4 (x) around x O of the second.

order differential equation are found first. For computational

purposes and, mainly, for reasons of matching the linear con-
necting formulas between the two sets of solutions (around x=0

and x=od ) of the equation must be found. They provide the analy

tic continuation of R3 (x), R4 (x) in the vicinity Of X=o and the

Wsymptotic expansions of R1 (x), R 2(x) for large [x. The conlti

coefficients of the linear connecting formulas are found by

solving the associated difference equation and its adjoint.

A generalization of Ford's method (reference 7 in the BIBLIO

GRAPHY), concerning the asymptotic expansions of solutions of

differential equations with polynomial coefficients and with

three or more regular singular points and one irregular at infi-

nity, was arrived at. it was then extended to the special but

important case of integral values for the difference of exponents

of the differential equation, thus providing the complete asympto-

tic expansion of the second, logarithmic solution of the equation.

Explicit formulas for the evaluation of the constant coefficients

of these expansions have been developed; each coefficient depends

only on a single solution of the adjoint difference equation

associated with the original differential equation.

Numerical computations were performed on an IBM 7090 compu-

ter, Six different cases of stratified media were considered,

five of them dealing with dissipative media. In each case the

input impedance of the biconical antenna Zi R+iXi was computed

and plotted for eight different cone angles: 1/200, I/40, i, go,

30 39.2 3 , 55 , 70 . The electrical length of the antenna was

varied from 0 to 7 (in certain cases up to 9 or 11).

Concerning the antenna, all effects of dissipation and

stratification, expected on physical $rounds and observed expe-

rimentally for dipole antennas, were clearly exhibited. General

conclusions could be drawn regarding the behaviour of the antenna
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int such media by mere inspection and comparison of the graphs
in different eases.

From the mathematical point of view the results of the
computations complletely verified the theory and established its
capability to yield accurate numbers. In~ the Overlapping resion
between convergent and asymptotic series representations, agree-
mentt of 4, even -5, decimals was obtained, with single precision
(8-decimal) arithmetic., The coefficients of the asymptotic
expansions were computed with an accuracy of 4 to 6 decimals.
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THE BI CON ICAL ANTENNA IN A

R A D I ALL Y S T R A T I F I E D M E D I U M

FCRXULTION OF TH PROBULU

INTRODUCTION

This research is concerned with the solution of the
following specific problem

" The behaviour of a biconical antenna immersed in a
radially and continuously stratified medium."

It should be emphasized from the start, however, that the
Investigation is by no means restricted to the biconical antenna.
Primarily, it is concerned with the theory of radially and

continuously stratified media and can be readily applied to all
electromagnetic problems atsing in the presence of such media.
Examples: Radially stratified electromagnetic lens, E.M. wave
propagation in such media, scattering by a spherical object
itself radially stratified, etc. In this connection, it can be

observed that the biconical antenna is the most genera! problem;
In the following sense: It requires the solution of the

differential equation for the radial function In the whole

interval 0 r-4o, when, as assumed here, the atratification
extends from r = 0 to r -o. It will be seen that this leads
to the necessity of determining asymptotic expansions for the

solutions of the radial equation valid in the neiAhborhood of

1-w1



rm-, not simply for reasons of computation but mainly because of

the problem of matching. In contrast, such complications do not

arise in a lens problem for example C. T. Tai, in his paper on

Luneberg lens (I pp6 ,23-24), obtains a series solution for the
radial function convergent for P4 2pa while the values of p,

in this case, never exceed pa" So, the series solution around
p o is aompletely adequate. For the biconical antena, however,
we essentially need the analytic continuation of the solutlos

in the whole interval 0! r . These statements will become

clear later in the paper and in the course of developing the

theory i

it Can be argued at this point that the biconical antenna

does not require the solution of the radial equation for TE
waves, since only TM and TEN waves are involved. It will be seen,
however, that the differential equation for the radial TM function

is more general than the equation corresponding to TE waves.

After obtaining these equations, a discussion relative to this

point will be included.

As a general outlineo the paper is divided into two PARTS.

In PART I, Chapter 1 deals with the formulation of the problem

Chapter 2 with the specific problem of a biconical antenna in a

radially stratified medium; Chapter 3 includes and discusses

numerical results obtained in a number of cases. The complete
mathematical analysis is developed in PART II, divided into

three chapters. In Chapter 1 series expansions of the functions
involved are obtainedo Chapter 2 is concerned with their asym.pto

tic expansions and Chapter 3 contains remarks relative to the

theory developed In the previous chapters as well as possible

generalizations.

The complexity of the problem depends exclusively on the
"stratification function" f(r), where

o (r) f(r) hae e2(r) P2 Ptn e (r) ossf (r) t (1)

Solutions have been obtained in various cases for certain sitple



functions f(r) and can be found in the literature. Many of them

are mentioned in references 1 and 2 in the BIELIOGRAPIY. This
research is also concerned with a simple form for f(r). It
represents a type of variation Shown in figure (i-1). f(r) starts

from finite values, greater or less than 1, at r O and conti-
nuously approaches the value 1 at r_b. it will be seen that
such a form is more general and more complicated than all cases

considered up to the present. On the other hand, a variation

such as the one shown In figure (i-i), so loosely defined by the

above requirements, can be represented by an infinite number of

functional forms. Unfortunately, complete Solutions can not be

obtained in the general case. Here, one of the simplest forms for

f(r) was chosen, satisfying the above requirements. Namely:

f() x+bxb

where ab are constant parameters, in general complex, and

c = a-b. (1-3)

A complete solution of the problem was obtained in this
case. The parameters a and b provide f(r) with the flexibility

to fit a great number of variations In accordance with the
requirements of figure (1-1). And, most important, despite this

severe restriction on the form of f(r), the analysis that follows
permits an insight into the complexity of the problem and the

type of complications that are introduced as f(r) becomes more
complicated and general in form. In fact, it will be seen that

the analysis of this case is readily applicable to three other
types of f(r) of a similar functional form. Furthermore, the
analysis shows by itself what kind of generalizations in the
form of f(r) can be introduced without rendering the method of
solution inapplicable. Discussiono, relative to these statements,
are given at the appropriate staWes of the analysis.
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MW=EL'S XQUATIONS IN A R.ADIALY STRATIFIED MEDIUM

in the time periodic case with assumed time dependence eit

and in a radially stratified and generally dissipative medium

Maxwell's equations are

x X 8404iHL (1-~4)

x R m I' i (r)I(=)

the boundary conditions between the medim and a perfect conductor

(in which c = 0 = 0 )are (3 p. 366):

n Z o (1-6)

ti, the absolute permeability of the medium, is considered real
and constant. , the complex dielectric factor, is Siven by
(3 p. 366):

and is here considered to be a function of the radius r. Thus

I(r). More specific definitions will be given later.
We now express Maxwell's equations (1-4),(1-5) in spherical

coordinates r,e,+ . If variations with respect to * are not
involved, i.e. if 0 we obtain:

N(pjne X -loiwrsine Hr

it U -)

iz(ra). -IEq- -LrH (1!

me(S.!r H = ! (Haine Sr  (1-12)

1(rH) " U= ( (r)rEe  (-13)'6r~e_ "



The case con sideroed, O , corresponds to the specific
problem of a straight biconjcal antenna, placed at the center of
the spherically stratified medium, coinciding, naturally, with

the origin of the spherical coordinate system re,o as shown in

figure (1-2). No loss of generality is Introduced by considering
this special Case. It will be seen in a short while, that the
only modification introduced by the radial stratification appears

in the radial equation. The angular functions satisfy the same
equations, which would be obtained if the medium were considered

homogeneous, ioe. if f(r) = l. tese results are also valid in
the general case of three-dimensional variations; see for

example, references 1 and 2, where the equations satisfied by
the electromagnetic field associated with a radially stratified

medium, are obtained by solving directly the vector wave equation
in the Most general case. The general analysis verifies the

statements made above. Furthermore, it yields the Same radial

equations for TM, TE and TM waves as can be obtained by solving
the simplified equations (1-9) to (1-14).

These equations separate into two sets. The first,
containing equations (!-ii),(i-12) and (1-13), involves H*, Ee,
Er only and corresponds to TM waves. The second, containing
equations (l-9),(l-l0),(l-14), involves K, He, Hr only and

corresponds to TE waves.

T.MSpherical Waves: Equations (!-12),(!-13) express Er and

in ter-ms of H*, Substituting in (1-11) we obtain:

~ F(rH)] rH~ in (1-15)

We now separate the variables:

H (r,e) = F(r)@(e) (16)

and, after division by Fr) 8()1 (1-15) becomes:



1i-6

7()dr (r) dr r(r)

(e) dO sne (sin())] = v(v~i) ,

where v(v+1) is the sep aation constant. Calling

rF (r) = R(r) (1-17)

we obtain:

d~ft~) ~ d~r)W r v+1)-)r =0 ( 8
drg dr +JC r2

d.- (sine(e))] + v(v.i)e(e) = . (1-19)e, s Ine ,•

It can be verified immediately that this last equation is

satisfied by

d® (o) (1-20)

where T(G) is any solution of the Legendre differential

equation:

d(sine 2Z)+v(v+l)sinO T(e) - 0 (1-21)
do de , -

We obtain in this manner the following expreselones

H*(r30) - dT (-2

i ad1 (1-23)

lr(rO) = v(v+ ) d , d( o.

r (,O)= ~v~vl) r~LT(r ) (-
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TESpherical Wa~es~ ZIn a similar way, substituting from
(l-9),(i-10) into (1-14) we obtain:

r2rS) 'b- n W ~ ) 0 (1"25)

Separating and following similar steps, we obtain:

= i dT dR

He(r'e) ± - w r. de dr U&-27)

HirG) = - V (V.1) LIT(G) ,(-8

Where T(e) satisfies again Legendre's equation (1-21), while

the equation satisfied by R(r) isI

d2R(r ) ( -+) 2 o
dr2  r2p~r Rr (1-29)

At this point, we may observe the following: if the

stratification involved variations with respect to G, i.e. if
= t(r,e) - even in the form = f(r)g(e) - we would not be

able to separate the variables in equations (1-15) and (1-25).
It is this essential difficulty which forces us to restrict the

problem to radial stratifications.

TD Spherical Waves: In this case Er= Hr - 0 . Being here
interested only in the field with circular magnetic lines, we

can derive the relations for TEM waves by considering them as

a special case of TM waves with Er - 0 • Then, from (1-24) we

obtain:

v -0 , (1-30)

while (1-18) and (1-21) become:
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dr2 "r) dr(

Put now:

-= 1o(e) (i-3 )

R~r) a---(I-33)
where Rc(r) satisfied the equation:

+ .W()R(r) =- 0 .(1-34)

dr2

Divide by t (r) and differentiate with respect to rt

t(r) dr 2  t 2 (rdr

which is identical with (1-31).ALso $o(a) satisfies:

sin ')ne e = 0 . (135)

B0, with R (r) and '1o(e) satisfying (1-34) and (1-35) we obtain00
from (1-22),(1-23),(l-32) and (1-33) the followi expressions

for the T]N_ field with circular manetic lines, i.e. with He - 0 Z

Xr(r,0) = 0 (1--6)

V0 rOO) =- idw r J'(,) (1-37)

hee e dsi a(e) (1-38)

Tthee xprsons~o ad equations (1---3),(1-35) could be
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obtained in a more simple WAY from the origintal set of Maxwellts
equations (i-il) to (1-13) using the fact that int the present

cas E i0 The aove meth -od was preferred, however, becase it

shows that, analytically, the MD field is derivable as a special
from the T-M wave solutions.

it is clear now that the Angular equations (-1"21) and (1c-35)

present no niew problem. The problem centers around the solution

of the radial equations (l71-18),t(1l-29) Anid (1-34). The last one
is a special case Of (1"-9,or, thrO-ivoug6h tI--3- t(13) a-

special case of (1-18)b
We introduce the electrical radia~l distance:

X m Kr (-9

f (r) =- f (X/)K ) (1-40)

062 P t (r) V, 2C(x) (-1

And equations (-)(l2)and (1-34) become:

TM waves d 2 d(X ):+ ()MV(V~l JR(x)=O (1-42)

d2R (x)

UK waves dR-x '-0-- + (x)1) RRx) = 1-3
dx x

In a dissipative medium Vis complex. Then:

x- K r = co j[f(h)m !g(h)]r (-5

takes on complex values in the fourth quadrant of the complex
x-plane, from x=0O to x=o. In equation (1e-45):

h=~/e ,f~h=coh(~inhnlh , (h)=sihQ,-sinhnlh) . (1-46)2~2-



Tables for f(h) and g(h) can be found in referenoe 4.

DISCUSSION OF :THE RADIAL EQUATIONS

Equation (1-44) for the TV4 waves is a special case of
(1-2),as it has been explained., it can be solved separatelyo

if it is More convenient to do so.

We consider now equation (1=42) for the TM waves. As it
,would be expected,, in the homogeneous case, i.e. when 1~ i
it reduces to the Spherical Bessel equation:e

R "1(x) + Cl vV+2 R(x) =0,(1-47)

in agreement with established rssults in tLhis case (B, 6 pp. Th-9).
'There exists a correspondence between equations (l 47) and (1-42)
and it will be pointed o~ut from time to time. Equation (l -47) has
aregular singular point at x-0: and an irregularsnuaiya

1=6009 pp. l6O0-l6l l68-1'78 417=428, 10 PP. 58-77). On the other
hand, equation (1-42) is much more complicated in addition to
the above mentioned singularities, it has singular points at the
singularities of Cp(x) (or of Cf'(x) ) and at the zeros of ce(x).
'The nature of these singularities depends on the nati're of the
singular points and of the zeros of ;!~x). We refer,~o ore

to the complex x-plane when we make these statements. Regarding
now equation '1=43) for the TE waves, we observe that, in

addition to -the singular points at xL--O and x- o it has
singularities at the singular PointIs of Cx.Bttezrso

V x) are no longer singularities of the equation. go, (1-42)

has more singularities than (1-43) at the zeros of C?(x W n
is a more complicated and general differential equation than
(1-43) is. At this pQintv reference to the discussion on page 1 2
can be made, In the specific problem of the biconical antenna,



we are only concerned with TM waves. We consider only equation

(1-.42)i not (1-43-), but we treat the more general Case.

Int accordance with the requirements on (X as shown in
figure (14-) and the discussion thereof, we now consider the
following speci __ form for

-- ±+A1+ __c_ f (r) Kr+a. (1-48)(x X+b x+b K r+b

c ae-b ,(1-49)

where a anid b are cons5tant parameters.
W ith the special form of cy(x), as given by (1-r.48), equation

(144) for TM waves be6c omes:

d2 R(-X) + da +[l c v(V+!) I R(X) = 0 . (-50
dx2  (.X+a)(x~b) dx +b X2

For comparison, equation (1-43) for Tz waves reduces in this
Case to:I

dRx + Cl+ c- vl) R (x) - 0. (1-51)
dx2 _

It Is obvious now that (1-50) has all the singularities of (-1
and an additional regular sin ularity at x=-a. So, temthdo

obtnining its complete solution can be readily applied to the
more simple equation (1-51).

Equation (1-50) has three regular singular points at x-0,
x=-_a, x=_-b and an irregular singularity of the first rank at

X=o (9 pp 417-4285, 10 pp. 58"77). That -is, it possesses two

more regular singularities than the Bessel equation (1-47).
Problems treated so far in the literature, dealt with

stratif'ication functions" of such simple form, that no additio-

nial sing~ularities were introduced in the radial equation. In
such cases It Is possible to Identify the solutions with vel-"



known functions, for example confluent hypergeometric or Bessel

functions with argument drm , where d and m are appropriate
oionstants. Tails paper (1) refers to such cases, Others can be

found in references 1 and 2. More complicated cases introducing

one more singularity were also treated, but they dealt with

situations where the stratification terminates at a finite

distance rj for example lens problems. As an example, we cite

Tai'.s paper (i), which alsoe refers to other similar probleMs

treated up to the present time. The comments on page 1-2 reveal

the additional difficulties that the biconical ante,ma presents,

when the stratification extends from r-O to r=o . We can also

see now that a stratification in accordance with the requirements

of figure (1-i), even in its simplest form (1-48), introduces at

least two more regular singularities into equation (1-50) for TM

waves6 Later in this paper, Chapter 3, PART iI, we shall see how

the method of solution can be generalized to more complicated

forts for (x)
Equation (i-5.0) possesses two independent solutions. Solving

the equation around x=O with the method of Frobenius, we obtain

two power series solutions R1 (x) and R 2(x) (defined more

precisely in PART 1I), whose radius of convergence is limited by

the nearest to the origin singularity, i.e. Valid within the

circle Ixj<mjn( ai, Ib ). By a suitable change of variable, x to

t, we can obtain for R1 (x) and R2 (x) power series expressions in

terms of t, valid within the circle Itt<l v for example, which

provide, in the x-plane, the analytic continuation of Ri(x) and

R2 (x) outside the circle IxI<min( Is , Ibl ), in fact into the
whole half plane of interest where x varies from 0 to , These

possibilities will be seen more clearly later, in the course of

obtaining explicit solutions to equation (1-50).
Solutions Rl(x) and R2 (x) of (1-50) correspond to the

solutions X J /411 2 (x) and- r NV,41 /(x) of equation (1-47),



1-13
respectively. Referring to figure (1-2), we observe that in the

antenna region (1) we have to use the solution R,(x) of the

radial equation. R2 (x) becomes infinite at x=0. In free space,
region (2) in figure (1-2), we must use a third solution R4 (x)
of (1-50), which satisfies the radiation condition at x C , iie.
the one which Corresponds to an outgoing wave. A fourth solutibn
R _(X) exists, representing an incoming wave from infinity. R4 ( )

and R3 (x) correspond to rx H (2 and n(4 ) of equat on3 n n+2(/2
(1-47), respectively. Here v takes up only odd integral values
v=n=l,3,5,,,, as will be seen (6 pp. 4-43).

Por (x) and R4 (x) we can obtain formal solutions by
solving equation (1-5.0) around the singular point x= o. But the

singularity is now irregular, of finite rank, in this case 1.

According to well-established results in the theory of
differential equations, the normal descending power series
involved in the So obtained formal solutions R3 (x) and R4 (x) are
asyptotic in the precise sense of Poincare's definition (9 pp.

168-174 444-644+, 10 pp. 69-72). They are good for numerical
computations if x is large.

However, the biconical antenna involves the problem of
matching the solutions across the boundary sphere S, figure (1-2).

This requires, in turn, the evaluation of Rl(x) and R4 (x) at
x-, where E is the electrical length of the antenna. In general,
is small enough, unless the antenna is sufficiently long, and

R4(0) can not be evaluated with the required accuracy by using
the asymptotic series. On the other hand, if the antenna is long:,
R (t) can not be evaluated accurately by using the convergent
expressions for Rl(x), since away from x-0, their convergence is;

slow. More generally, a convergent series is of no use for
numerical calculations if we need values at points away from the
center of their circle of convergence# The rate of convergence
soon becomes slow as we move away from the center, even If we are
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still away from the circumference of the convergence circle. The
usefulness of a convergent series representation of a function

is, in gSenerai, quite limited,
Since equation (1-50) is of the second order, any of its

solutions can be expressed as a linear combination of two other

independent solutions. That is, we have:

R!(x) = A1 3, R3 (x) + A1 4 RA4 (x) (-52) ....

R2 (x) A23 R3 (x) + A24 R4 (x) . (1-53)

Compare with the relations
(x ) -1 H- 2  ) + I

Nv+I/2 (x) i H( )  x) - I

corresponding to equation (1-47). If we can evaluate the coeffi-

cients of these linear relations, we answer all the problems

arising. Equation (1-52) provides in essence an asymptotic

representation for R!(x) and enables us to evaluate values of

this function for large x. Also, solving (1-52) and (1-53) in

terme of R4 (x), we obtain:

R4 (x) - A41 R (x) + A42 R2 (x) (1-54)

an equation, which gives the analytic continuatlon of R4(x) in
the vicinity of x=O and enables us to evaluate its values for

small x. The determination of the above coefficients is in itself
a major problem. In effect, it constitutes the main problem of

this investigation, This is precisely what we meant on page 1-3

when we referred to a "complete solution" of the problem. The

present discussion als6 clarifies the stitements made on pages
1-1, 1-2, 1-12, regarding the Seneralty iUherent In the

bloonical antenna.
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It may be argued at this Point that it iS not actually

necessary to extend the stratirication beyond a certain value r

or x. Beyond this point we clab consider ?(x) i and, instead of

R(x), make USe ofx of equation (1-47).0 We assume,

of course, that C(x o ) is very close to 1. This would introduce

a new matching problem across t.he sphere rtr 0 or x=x O, Unless

6i.e. unless the stratiftcation is terminated at the end

of the antenna, an assumption which introduces a severe restri-
ction into the problem, indeed reduces it to a very special case.
An additional matching problem, at x x0 would, of course, require
additional computational work; but, more important, it is
precisely the matching problem that introduces all the approxi-
mations to the solution of the, otherwise, exactly formulated
problem of the biconical anteaia. Apart from all these conside-
rations, we would still need to evaluate Ri(x) in the interval
ox ix and also R2(x) in the intervai ti x . Unless further
severe limitations are Introucmed, the convergent series expres-
sions for Ri(x) and R2(x) will not be useful for values of x
close to x and the necessity *f obtaining the linear relations
(1-52) and (1-53) would not be avoided. Not to mention the fact
that specializations of this swrt restrict the generality of the
problem.
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THE BICONICAL ANTENA I)O(-SED IN A RADIALLY STRATIFIED MEDIUM

The configuration is shown in figure (i-2). The results of

the preceding chapter show that the bi&onical antenna theory for
homogeneous media is readily applicable to stratified media if

the proper solutions of the radial equations are used. We will

not develop the theory step by step in this chapter. Detailed

expositions can be found in references 5 and 6. We will make use

of the results of the theory without deriving them, as long as it

is obvious that they apply to the present case. Wherever essential

modifications are necessary, the analysis will be given in detail.

In this connection the most important observation is that

the angular equations for TM and TD4 waves are not altered. It

is then clear, that the problems of satisfying the boundary

conditions and of matching the fields across the boundary 5, at

x e, can be solved exactly as in the case of homogeneous media.

We start with the dominant, or TEM, interior mode. The field

oomponents were found in equations (1-37) and (1-39), or with

K r~gx:

K2 dR(x)
Hxx,) - -dic7- - -sinQ~ (2-2)

where 1/sinG is the solution of the angular equation (!-35), the

constant being included in R Cx). The equation for R (x) is

(1-4); with 9(x)= x+a it becomestx+b

R(X) + R (x) - 0 (2-3)0 x~b 0
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Putting X+b-z it becomes:I

R"'(z) + ;(l+c/Z) R (z) =0. 24
0 0

The solution of this equation can be expressed in terms of
confluentt hypergeometrio functions. Put: ROW ( ) Ze1u(Z) . The
equation for ii(z) is:l

or,O after division by ez i

ZU"I(z)+2(l+bz)u'(z)+E[(1.e2)z+c+28J)u(Z) = 0

Take 6a-i and change the independent variable z=pt i

Finally put: 2i=l =l/2i, z t/2i, t=giz. The equation becomese-

tu"(t)+(2-t)u'(t)+(c/2ii-l)u(t) # 0 .(2-5)

Comparing with the confluent hypergeometric equations

XY '+(y-x)y'-ay 0 y = XF(alrjx)+K G(aITjx) (2-6)

we see that a general solution of (2m-5) is:

u(z) =K1F~li/ I2 i)+CG(l+ic/2 I2- 1 21z) (2-7)

Finally the general solution f or RO (x)I

R (x) = (x+b)o IXCK1 F(I+ic/2 1 2 1(xb)

QL2 (I144C/2 12 1 21 (x+b)) . (2-8)

G(aIygz) is the second solution of the confluent hyper-
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geometric equation, the so-called Gordon function (11 pp. 577m

,646), when y r n ±- 1,2,3,... is a positive integer. Here we have

Another Bet of in~dependent solutions, the Whittaker
functions, called U1(atirz)v U2 (alyt'z) in reference 11, are
def ined in terms of the f ollowing asymptotic series:1

U!L (aI yI Z) -...- Z'~ez1 (laAra *...2(2

+ C(ya.(-)(-)v-~). (Y' a+nml), .

where, with z e1zle 1* and -ffr(tr , the following interpretation
must be made:

-z =IzI ei ) (" '- 5ina (2-11)

R Cx) can be expressed in terms of these solutions as follows:

0

+K4u2(l4.ic/2j121i(x+b))] (2-l2)

Numerical values for F(l~ic/2j21(x+b)) and
G(l+ic/2j21(x.b)) are not tabuilated. The argument is z-21(x+b)
and in most cases, unless Ibj is veysml, zislagan

renders the wel1-1known convergent series expressions for these
functions useless for n rerical computations. It is more
advantageous, therefore, to solve equation (2m-3) directly around
the non-singular point x=0O. Such necessity does not arise, -if
JI is large enough to permit direct use of the asymptotic
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expressions (2-9) and (2-10).

Equation (2"3) has a -regular singularity at x= -b and a

Irregular one at xmo. x=O Is an ordinary point. Convergent series

expressions,0 valid for all values of x in the, right half plane of

interest and with a better rate of convergence, Oat be obtained,

if we make the following change of variablet

1 FPF1-t (2-13) ____

Bilinear transformations of this form will be used and discussed

later, in Chapter 1, PART I, where the solution of (1-50) is

investigated.

In terms of the new independent variable t equation (2-3) i

expressed as follows:
d2Ro (t) -dR o (t)

(i-,t) 3 ("t 2 ) - (mt2l~2 +
dt2  dt

+ 4b[(2b-a)t+a]R (t) = 0 • (2-14)

A regular singularity appears at t=-1, correspondingly to x=-b,

an irregular at t=l, x=oo, while t=0, x#0, is an ordinary point.

In order to obtain convergent series expansions around t=O we put:

Ro(t) -- ;oetn t i

o = -n-I<1
and substitute into (2-14). Collecting coefficients of equal

powers of t and equating to zero we obtain the recurrence formula

for the coefficients:
en= 1 (n.l) (.3n..-4)e en.2 (n-2) (n-i)e2baen. 2-[ (n-3) (n-4) +"1

+2b(b-o)])en.3+(n-4) (3n-!!)en.4-(n-4) (n--5)en.5}

0 , m = 1,2,3,..: • (2-15)



The process leaves e0and el undetermined as the constants of
iteagration6 Two independent solutions are defined as follows:6

R01 x 4 R(t) = l+e t +e t +.. 0 06 1 NO~ 0;W (2-16)

IR0 x W R62(t) = t+8 2 t 2+8 3 t3+... 0 al0 o ,6 1 ; It(1.(2-17)

The samfe recurrence formula (9-15) is used for bt mI n -s
If the Proper initial conditions, given in (24-6) and (2-17)v
respectively, are Inserted. At =10, t± O we have:O

R6.(* d - 2x O 9R 2 00 j 0 -/2b .(2-18

in terms of these functions we can write:

R(x) =K5 R,(x) + X6 R6;(x) .(-9

.Infini1-te-Bi-coni-cal-Ant enna-: The field is expressed by
equations (2-1l),(2-2). The condition of an outgoing wave to
Infinity requires, in view of (2-9 and (2-10)t that in the
present case:

E0(x W --Co (x+b)em.X U (l+ic/2j2'j2j(x+b)) 0 _Rex,.c c - (2-20)

where C0 is a constant. The transverse voltage and radial Current
In the upprcn are defined as follows:

mit Ir -edO
V0 (x)= So 0E 0rdG = -wLiR0(x =-wILR(x)2nooe (2-21)

0 -0

inf (2T
I x W- jHorsine dj _-G - 2TKl R0 (X) .(2-22)

The so-called characteristic Impedance of the biconical antenna
Is defined by:



inf itf = O ~X)int

V (x) /I)

where R 0(x) Is, defin-ed in (9-20) . For non-dissipative mfedia it is;

rea.l, bcauS1e, despite the i factor, the functions R 0(x) and
R/ (k) are complex. Bgut it is no longer a constant;, it depends On

the radial distance x. This is the Most important effect caused

_______________by the stratification of the medium.

FiniteBiocantn&f -lciaLnthiJid

Xxtres-sions:, For the dominant TIM mode in the region 0 .4 the

field is given again by (2l,22.The solution R (x of the

radial equation is given by either (242g) or (2"19).

For the -higher TM modes in all regionso the fields are given

by (1-22) to (1"24). introducing the electrical distance X =Kr

and remembering from (1-41), that in all cases we called:6

4 t (r)r2 K Y q(x) , where K= constant, we can rewrite

these equations as follows:i

H(x09) - j44 dO (2-24)

R' )dT
E0 (xte) 10 lwq xcX (92-5)

Er(XG ~(+) R (x) --- T(e) (-6

For the interior TM modes in the region 4_e we take
R(x) =R 1 (x), where, as explained in Chapter 1, R1 (x) is the
solution of equation (1-50), which is finite at x=-O. The precise

defiXnition of R1 (x) is given in Chapter 1,~ PART II, by equation

(1-10. T(G) satisfies the Legendre differential equation (1-21).

As in references 5 and 6 we choose the odd solution satisfying
the symmetry condition about the ground plane e=Vr/2a

T(e) = X (00so) (P~ (cose)'kP~ ("cose)) (2-27)



We follow the notation of reference 6. In reference 5t the above
function is denoted by L(cose).

The boundary condition± E '(X 'O) Xr'(X,tv..e) 0 yields
the infinite set of characteristic values v. it is expressed by
the following trans cendental equation!

MV ( cose) 0 0 (2-28)

Pori 4, Ox jk the total interior field is then:

x2 T'x)1 r~z O V a V~ R 14, (-ose) (2a-29)

a R(x)R(x
xiej-(x 0 )~ - 7<~i F M~ (6o086) --f~iG* inX2-0

X-m~~ ~ R1x (x d) M Y--_cf0+-R )I -("1

The subscript V wag added to R1 (x) to denote the characteristic

Value to which It corresponds, while the added subscript 1 in

Elr etc., refers to the interior region (1) in figure (1-2)e We
must also remember, that the general solution R(x) of (1-50) for

v-0, can be expressed as KR'(X), where R ()is the general-- o - - 0
solution of (2-3) in either of the forms (2-12) or (2R-19); with

this in mind, we can check equations (2-29) to (2-31) dimensio-
nally and prove them correct.

The total radial current In the upper cone is given by:

vx) xsinO0H1 (x'O0  1(X) + !(x) ,(2-32)

where:

I (X) =2TrK R(x)(3)

is the principal current associated with the Interior dominant
TIN mode and
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---) ----0 V.- IV ( d M(coge 0  (2-34)

Is the complimentary current associated with the higher interior

TM modes. From the definition (1-10), PART II, of R.v(x) and for

v> 0, we Observe that R-v(o) "-0 , Then

_(o) -o_) = (o) = o) * (2-35)

The transverse voltage V(x) is defined by

KEie dO 1 4-iUk)R -(4 sie 4

= ea

) Xo V (oosO) de

From (2-27), (2-28) we conclude that all the terms in the sum

are 0. Thus:t

V(x) = VR(x) o 2iWR (x)1ncot -2 (2-36)02

The so defined voltage is due only to the dominant mode,
irrespectively of x. Callini

a*lncot(eo/2) -37)

0- - ..TrK (2

and using (2-19) we can write:

( x) -D R' (x) + D2R' (x) (-391

I 1 01 x +a = R R (2-39)

We will express D1 0 D2 0 lo(x), V(x) in terms of V(') a

the terminal adittance



as seean by the dominant m-ode at x-e At (2- (2-38) and (2i-39)
yield:

Then:o

Dl i/"ZO R0 2 1Dg ou/z

Ro x Ro' )A 't Y

Where A± - -(I) the Wronakian of the particular
R~l~) R' (X)

solutions R01 ,(x), RO (x) of equation (2-3), is a constant.

Referring~ to (2-18) we find that:

02(X 01 R'(X R02 (X) =12(2-41)

We may also use the definition (2-12), instead of (2-19)9

that is :

R02 Cx) = (x+b)e 'ICu 2(1+Ic/2Ij2j21(x+b))

With the help of (2-9) to (2-11) and letting x--aa, we obtain:

H l(x) -1~ 2 _1+1c/2 e"Tc/4+21b xic/2 eix

~ol (x~

H1 ()~ "1@2lic/2 e~/+ Ib 1c/2 i
e"o1/ X- -I

W e
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R' (x) j1c2*r/ -16/2 *-1iz

ten, in this case:

leturning to (2-3,(2m-39) We can write:

___________________ - O2()+i O O )Rol (x)*

-(iloltRoie )+R'1 Ct) ROVX), (2-43)

Z(x) = (12- C(0 2~/z FYtRog( )9- (X)+

The input admittance is defined by:

1(0o) CR -~ U. £R 2 t+A YtR U I)]R1- (0)-
x - 1 -- _ _ _ _ _ _ _o

(2) to(-3) ag follows:1RoiO

~2 x)ir~~e=:-v o M os)2 (246

U + d t ()50 (2-47)0
meOy~o q'x Rl-. d -v 9-5
[i + to ~t)+R' -)

K 1(x) K~ a~ 1(Lt A... o(cae (-8
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In the region 4X:c4o only higher TM mtodes appear. The

field is expressed by equations (2-24) to 0"906. In order to
satisfy the radiation, Condition we must, now take Rx:R4X
where R4(xM was defined in Chapter 1* explicit expressions for

this function will be given In Chaptoe 1 and 2, PART UI. For the

odd angular solution we must use.*

V__________* Te) Pq (cose) , q 1o,3,,5,o.* 6 (2-49.) __

Denoting we Can express the total exterior fieldqE-l 3 '5. q

in the region litxc as follows:e

x2 cWxE (xoG-e() (dos)(-)

qr q q q1

b Rpjx d

x --E)= d-

-~~~b 0 44 -~~e an X) O T(-4
XH (Xe) -Ha- -( -q~e) (2v-52)

Wed wou llr foitiotn ans ep ei l sor fthe erminal

adiane Y~ qain(-5 ilte rvd nexpression flow.

for th-ipu aittnc 0~ At wTe oba0fo 24)
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integrating from e=e to ei.-e- we observe that, by virtue of
0 0

(2-27) , (2-28), the terms corresponding to the summation vanish.
Therefore:

KY4KY V(l e-
motoso 2- .... n- i n o ot

K2E

integrating X-H(tOe) the same way, but using now its expression
in (2952) and equating we finally obtaint

Yb- (cse) (2-)t K-V( ) q q(ql) Pq

The coefficients bq will all turn out to be proportional to V(U).
So, V(e) cancels In the above expression for Yt"

The remaining step is the matching problem. We write the
sets of equations (2-46)s-(2e-48) and (2-50)-(2-52) for x=e and
substitute into (2-55). it suffices to match only the electric
field, or, alternatively, the components H and E The procedure

is based upon the orthogonal properties of the Legendre functions
and is fully explained in references 5 and 6. Since the strifi-

cation does not affect the angular functions the matching problem

follows lines identical with the case of homogeneous media. There
result two infinite systems of linear algebraic equations relating
the sets of coefficients a and b The coeffioients themselves
are determined by solving these linear systems of equations. In

the present case the only difference from the homogeneous problem

appears in the coefficients of equations (-46)"(2-48) and

(2-50)-(2-52), when written for x. We will not, therefore,
repeat the process of matching. It follows the method explained

in full in references 5 and 6. The results in the present case
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are as follows:

V ±~qq (2q

a)V( 2q+l_)
b~ -VUe)Pq(c5e 0) + a V vqv '(-

o qq

where:

___________________ 2V+l _ QM(cos
I-v +-vv+ Pq I ___ 

dIM (cose )e
Vqv v~v+} v~v Bifle)0Pq (cs% d9 2-0

+a RIqL

R;t 4(9) _ qR(t) (-2

____ tbl

Substituting the a V'Is from (2-57) into (2a-58) we can obtain
the following infinite linear set of equations containing only
the coefficients bq

bq TUz -q o + Z Vqv m Mqq

This shows more clearly that all b q's (and, consequently, all

a0)turn out to be proportional to V(J).
From this point on all the approximations for the solution

of (2-57) and (2-58), or (2-63), -in special cases, like small-
angle cones, large-angle cones etc., follow lines identical with
the case of homogeneous media, as explained in references 5 an c.

SmallwAngle B i coniceal Antennas: In the limiting case of

o approaching zero, the system of equations (2-63) can be solved0
(5 pp. 833-834t, 12, 13). The method of solution, applicable in
the present case, is Identical with the one used in reference 5.
The following limiting values hold as -P0
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V k& 1C4/n(2/e 0) k+a /l(/ k = 1,3,5,... (_0-64)

dM (c s ) d 2 -- =2 -65'bvco / a %Cln(2/e0 )) 0 1-

Pico%) &1 *(2-66),

q a4nV~) q ("7

and making use 6f' the above relations,8 We can write equations
(2-63) as follows:

Z Bi-,
2q+1qk m = 8

-------(2k.1l+26)6b2*(kom,q) =.(2-69)
(ke) (k.+l+) (k+e.-q) (k+e+qil) (u-k-8) (uok8.fr)

In the limit 0 --- O 6-0O we have:

0'' 0O if k q mk:

6~' &O If k q m k

q(q+l) (2q+l) I

Only the l-at case# k--q-m, contributes significantly to the su
in (2w68), which, in the limit, can be simplified to:

Zq+ -q q(q+l)B Z, /[q(q+l)(2q+l)J :L 1

Thus:



q Z;--- Zv _Z 2-70

qq+6 q q

,So, in the limit of small-"angle cones:

Y& 1 L- ztz. -I'* __- (2-71)

-It is interesting to examine how Ytand Y.behave as ,the

elecbtrical. length of the antOnnax approaches zero. This short -___

antenna limit will serve as a check a1nd explanation of the
numerical results obtained in the next chapter, in this partioular

case. Using (2-61) and (2-62) we can write:.

As 1 O the behaviour of R q and R2 q (t) can be found from the

results of Chapters 1 and 2, PART NI. WeO refer, first, to equation
(1*-54):i

R4q( 41 Rlq~t 42 R2q~l

on the other band, series expressions for R M(L and R- (I can
be written down at once, by merely Inspecting equation h"i50):_

bo +bi1+..
R (be R qU)lne +~-- 0 ,q =integer

In Chapter 1, PART II, these series are developed In full, but,

-for our present purpose, we can do without any reference to the
results of this hpe.Tua

R ) q4.1 a +2a2e I see q4.l
R4 (2-72)
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S1 b +b +. ....

iq(t) 1-  + 1 1 +a2... =--+&I. (2-2=)

RR'(e) b-+2bt -...

R'-- (f) R q(-, + 1 -lt .

q b0 ,b 1 ,... . b

t2q+2 4aE. * .. 2q+2 (2-74)

1 + (A4 2/A4i)'R 2q(l)/Riq()]

(q.!)/e - . .__ _ .. . ..
S ( 42/A41)(b

Substituting in (2-71) we obtaini

Yt& 2 IS .A e (2-76)

In the above equation use of the identity q- ln2 was

made. Therefore, as -0, Yt- O.
The input impedance is given by (2-45), which, with the use

of (2-18), reduces to:

z als - o2))Zo YtRo2() " (2-77)
0R (t)+Q)

Using (2-13) together with (2-16) and (2m17) we find:

o 1 e(t ) 1+ t2o (2-7)

0. 1+0 2 (~~ 2 2 (2-78)
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aR1l) !L ~ + 0(0) a - + 0,(t2) (2-79),

62 2b2

02 2b

Substituting into (2-77) and letting e-O, we obtain:

__ __b_ b~~
El !-~In1+O(t) a - + - . (2-82

TKZ 0  1+ ilote/2

We observe that, as 10-, Z a*o C s /l. For a non-diSsipative

medium a, b, O and 9 are all real and Zis large aft capacitive.

For a dissipative medium a, b, -e=Kr0 , - o are complex and both

R and Xi go to infinity.

Wide-Angle BiconicalAntennas: In the case of homogeneous

media, it is well known that a good approximation to Yt can be

obtained, if we neglect the higher order internal TM waves (6

pp, 41-43, 13, 15). For stratified media, however, it can be

anticipated that such an approximation will not be as good,

since, with the assumed variation f(.') (x+a)/(x+b) , the

stratification function changes more rapidly for small x, i.e.-

inside the antenna in region (1), figure (1-2), f(x) varies more
rapidly than outside. It is natural to assume, that more internal

waves will be needed in this region to account for this greater

variation. One is left with no other alternative but to solve
the Infinite set of equations (2-57) and (2-58). It is still very

instructive, however, to obtain a solution in the fo1lowing two

cases: when only the principal TI4 mode is retained, all the

internal TM modes being neglected, and, secondly, when, in

addition to the principal TD4 mode, the first TM internal mode

is retained and all the higher neglected. In both cases, the set



of equations (2-57) and (2-58) can be solved explicitly for the

coefficients bq. In the case of homogeneous media, the difference

between Yto and Ytip the zeroth and first order approximations

obtained in this manner, is practically very small (6 pp. 41-43,

13)1, Justifying the assumption whereby all higher internal modes

were neglected. For stratified media, as the results of Chapter

3 show# Yto" Yti is small for relatively long antennas, roughy

one wavelength and longer. For such lefgths the assumption that

the internal TM waves are unimportant and can be neglected is

still valid6 For shorter antennas, however, in the same medium,

Y to Yti and, as a result, Zio- Zii are large, in agreement with

the prediction mentioned above. One should then retain more

internal waves and solve the system of equations for the bq's

separately for each assumed length 9 in this range of values.

in the zeroth order approximation neglecting all internal

TM modes, i.e. assuming that all av= O, we imediately obtain

from (2-58) :
*( 2q+!)

bq Pq(cose) (2-83)
o q0

Substitution into (2-56) yields:

icD- ± 2q+l + P2(+oso
~to -2 7Tq 77+7 q q 0(8)

For the first order approximation we retain the first

internal TM mode, in addition to the principal TIM mode, and

neglect all the others. In other words we assume:

aV1 - vlq q , av2- av3 - .2,, - 0 . (2-85)

From equation (2-58) we obtain in this case:

bq Ou q 1±2a Y + V( P (cove ) + b



it is convenient at this Point to introduce a change in the

notation to mnake the forMulas comparable to 0. T. TaWO results

in the homogeneous case (13, 6 pp. 41-43). We call:

I -f M (068e0Pq (oose)sine do (2-47)

N~ f ov(cose)]2sine de (2-88)
0

Then, from (2-59),(2-60) and Schelkunaff's formulas (6 pp. 47-

48), we -have:

(2q+1)q(q+l)
Uvq=I I/Ny v -- I .(2-89)v v vqv gv(v+l) vq

Equations (2-86) can now be Written as follows.-

mwt(Qq+l) +vt) (csO) (gq+l)q(q+1)
b Y V Pvlq Av (2-90)

q 2fl q q 0 "Y1  2v (vl+!) NVi v

Multiply (2"90) by Ivlq and s-u- Over q =193959... *With the use

of (291) we obtain:

-V ~-VL =(q+1)Y+P (cose )I -2uI~o q qq 0 vlq

- Z~ Z(2q+l)q(qL+1-)-y- 1-2

Yl~lvl(v4)q- q -vlq

orb:

(mwp/anmE )V( . 1(2q+l)Y+Pq (Cos00)'ia
V1 ~ ~ . (q+l) q --q l)Y1

1 +~" Y 1 1 2v (v1+1)

Substituting back Into (2"90) we find:



bq - ()[(2q+l)Y )((cose)m Y(2ql)q(q)l)I-
q 2qT z q q 0 q vlq

2vi (v +l)NvYv1+Z (2q+l)q(q+l)Yqi(22

Finally from (2-56) we obtain!

(.*I) P-. (se ia .Y  (9

tz 2vt (vi2)Ni q(2q+l)q(q+l)YvI2  (2e93)
0vv q q viq

This equation is in agreement with the result of C. T. Tai (6
pp. 41v-43, 13) obtained, for homogeneous media, by application

of a variational principle.

For the short antenna limit, letting t-+O, we find from

(2-61) and (2-75):

q bq (2-694)

Then from (2-84):

,ai- 2q+. P(os0 ]

Thus, after comparinS with (2-76), in the limit 9- 0 Yt and,

consequently, Z. for wide-angle antennas behave in a way similar

to thin antennas, as explained in the preceding subsection.
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CHAPTER 3

NOMICAL COMPUTATIONS

INTRODUCTION

Numerical results were obtained with the use of an IBM 7090

computer. Six distinct cases of stratified media were considered,

heretofore numbered I to VI, and in each case the cone angle GO,

fiBure (i-2), was given 8 different values:

e0= 1/200, 1/40, 10, 20, for the smallangle case,

0o= 300, 39.230, 556, 700, for the wide-angle case.

The special Value 00= 39.230 in the latter case was chosen,

because it yields an integral value for the first characteristic

root of equation (2-28), namely:

v1 = 3 , (3-1)

facilitating the evaluation of Ytl and Z~1 (13).
in each case the input impedance Zi = + iXi of the

antenna in Ohms was computed and plotted as a function of the

physical length of the antenna r o . For thin antennas, the

terminal admittance Y is independent of the cone angle 9o,

according to equation (2-71). We call:

YT - GT+iST - 2 1t - _ -+- 0 (3-2).. . Tr -K -- q
0 t TfK q q(q+l) q --q(3 )

This characteristic quantity for thin antennas was also plottedin Ohms versus ro in each case, figure (3-2).

Case I: In view of the fact that no experimental data are
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available concerning the behaviour of a biconical antenna in a
radially stratified medium and In order to check the theory, we
considered in Case I a nbn-dissipative medium slightly stratified

so that, at a certain frequency, the stratification function has

the following form:

X) 2 1
X+10 a±2 ,b4 33

X -kr r w C(-4)
f r (r) : !

e) r lOIK " (3'5)

Thus, at the origin E(O) =- i.2t, while for large r the die-

lectric constant reduces to E, the free-space value. Zi=Ri+iXi

and, for thin cones, YT=GT+iST, in Ohms, were plotted in figures

(3-3),(3-4) and (3-2), respectively, versus e± w 0 r0 . It is
natural to anticipate that these curves will be close to known

results (5 p. 837, 15) for homogeneous media with E=%E and 6=

=1.2Eo, thus providing a check On the theory. The prediction is

completely Justified as will be seen In the next section.

Cases II to V: In all these cases,.the antenna is immersed in

a stratified and dissipative medium similar to the conducting

solution used in Iizuka's experiments with linear antenmas (14).

The complex dielectric factor is:

t(r) - e(r)[!-IT(r)] , (3-6)

where T-tanb=a/, the loss tangent, can vary from 0.03.6 to 8.8,
while E/eo changes correspondinly from 78 to 69 (14 p. 3). In

these ranges such variations can be represented very closely by

the following functional dependencest

E (r) : eoFf rf/T (3-7)



T~r) =Tfr+dO. 03,6/Ti (-8f r+d

Thus, at r=O: C(o)=78E0, T(O) 2o036, while for large r, ~)-Ee
and TVr)-Tfe The Parameters #-f and T~ coto tefnal values

of E.r), and T(r), their' ran~ges being:

wile6 d affects their slope. There is a correspondence between
values of e and Ter/mgE which, for the conducting solution under

consideration, has been determined experimentally and plotted
(14 opp. p6 7). it is a simple matter to see if the assumed

variations (3-7) and (3-8) agree with this curve. Even In the

extreme case C--9and T =8.8, one obtains:

Er = e66 T(z') z 8.8rd. 0688

Elimination of r/d between these two equations yields I

6(r)~~~ =6/l3(T (r) -8. 8) (-0

0

a relation, which, in the above ranges (3-9), agrees closely with

the experimental curve mentioned above. For intermediate value.

of atand Tf the rangeso of £(r) and T(r) are smaller, i.e.

and the correspondence between e(r) and T(r) is correct, as long

As Cand Tf themselves satisfy (3c-10). So, e~ and Tf are not
independent parameters, but are related according oeuto

(3-10).
The assumed variations (3-7) and (3-8), in addition to

,satisfying the above requirements, lead to a stratification

functioCA T(X) In the form (1-48). Substituting (3-7)9(3"8) into
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(3-6), we obtain:

- --~e( T rd (140 06) /(l-iTf)(312
CO Mgeof~lm~f) r4.ddt/758

calling:

(0 (3-)

X Kr , r(3 -15)

we can write (3-l2) as follows:f

M (r) K 2 (O x.-X0.3)-T x~b (3c,6)
2 _ __ ___ __ ___x8

b M-f784 i1 3 l8)

8 Kd --= a .(3-19)

We can also write (3-7) and (3&68) as follows:

Kr+S Kr+S(O. 036/Tf)(2)

0Kr+S(Ef/75) Jf K r.S

Two independent parameters appear: Tf I controlling the final
Value of the loss tangent of the medium, and S, controlling the

slope of the stratification function. isfudermT with the

use of (3-10). Different values of these parameters correspond to;

different media. Note, also, that S depends on frequency. The
independent variable is the physical length of the antenna r 4,

Introducing electrical units and referring to the common initial

-alue., we USe a. Inepndn var-iable the following quantity:
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Note that x viaries in the -f urth quadrant of the comaplex x-plane
from, 0 to c6along the straight line connecting the origin and

the point x=b.
Cases 11 to V refer tol different stratified media with the

following Values of the independent parameters:e

Cas I : , S =8 e 76.897 (3-22Y

Case litI: 1r , 9 ~ 76.897 (-3

Case 1V : Tf= 1 , S = 4 t £f 76.897 (3--24)

case V T 2, s= 6 , =75.785 GO (3-25)

Cases II, Ii, IV can Also be considered as referring to the sgame
stratified medium, but correspondig to different frequencies.

6(r/EOand T(r) for all 4 cases, as given by equation (3-20),

Are plotted in figure (3lversus y = W4V-78 r 71%K2r

Case-V1? In contrast to the Previous cases, where the

conductivity of the medium increases away from the center of the

antenna, Case V! refers to a Medium in which T(r) starts, at r=0,

from a high value Ti and decreases to 0.036 as r-'coo, while
OE(r)/E 0 starting from E.increases to 78 as r--*o.

E~) 08 r~d (3-26)078 8~~

r+dTi/0.036
T(r) =0.036 .(3-27)

It can easily be checked that the requirement of correspondence

between e(r) and T(r) is satisfied In the ranges:

/e 0 , p T (r) .0. 036 , (-8

as 10ong as E, and T, satisfy (3-10).
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In place of (3-12) to (3-20), we have -now:

rd (78/e .)

K= w,%78 (3-30)

K K 41 -10.36 (3-31)

X=Kr -K Kr (3-32)

(x) - 2K (3-33)

a = ~l-1 1 )/i-i0036(53-34)

b -s(78/e1)4i-.036 (3-35)

S Kd - d (3-36)

Sid 8 K r+S ) Kr+S (T/0. 036)=__ -8Tr = 0.036 " ... ( -37)
% Kr+S(78/e,) T 'K r+s

As independent variable the same quantity.

= = 0 r = ro  (33)

was chosen. The following values were given to the parameters:

Case VI S Ti- 1 , S - 6 , ei- 76.897 (3"39)

6(r)/e o and T(r), as 6iven by (3-37), are also plotted in figure

(3-1), versus the same variable y = Kr
In Cases II to VI equation (2-37) defining o must be

written as follows:

[ - .nct(eo/2)]/T 0 (3-40)

For all Cases II to VI and in terms of the same independent
variable t = s = 79 ro,
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YT= -Yt GT+iT, for thin cones, in Ohms, is plotted in figure

(3-2). The input Impedance Z1± R +iXi , in Ohms, is plotted in

figures for e 1/200, 1/40, 10, 20,

respectively. For wide-angle cones, the zeroth order approximation
Z- 0  R +iX , in Ohms, is plotted in figures (3-9),(3-0),(35-1),

for0 30, 550, 700, re pectively. Finally, for 00 39.230, the

Zeroth and first order approximations Zio and ZI, in Oas, are

plotted in figures (3-12),(3-13),(3-14),(3-15) and (3-16)o for

DISCUSSION OF TI RESULTS AND CONCLUSIONS

All computations were performed With single, 8-decimal,
precision, By far, the major problem was the evaluation of Rix,

R2(x), R3 (x), R4 (x) and their derivatives, as well as the coeffi-

cients of the asymptotic expansions (R-5),(i-53). Remarks relative
to the computation of these quantities will be postponed until,

in Chapters 1 and 2, PART II, the defining formulas are developed.

As a general observation, we note that the smoother the stratifi-
cation function, the closer the singularities x=-a and x=-b of

equation (1-50) are spaced; this, in turn, makes the overlapping

region between the convergent and asymptotic series expressions

for Rl(x) or R2 (x), wider and the agreement better. In Case I, for

instance, in the middle of the overlapping region, agreement of

4 significant decimals was obtained for the lower order functions.

As the stratification function becomes sharper, the overlapping

region narrows and the agreement worsens. This was observed in

Cases IV and V, characterized by a sharper T(x); in a region

falling roughly betweene= 3.4 and = 4.2, for thin cones, the

plotted points deviated slightly from a smooth line, in contrast

to all other re lons and cases where the smoothness of the curves

was remarkable. No attempt was made to obtain more accurate values



in this short region in Cases IV and V9 since the deviations

were small and the use Of an Improved series would alter the
computer program.

For. wides-angle cones, the situation is less critical in this

respect, Ad far as Rico Xio and Riu, Xi1 are concerned, for
reasons similar to the homogeneous case (12, 13). Furthermore,

In equation (27)for thin cofteaq Z+ z= -
4 q 4+Cq (1) /R4q(E

lq(1/Rlq )1appears. In contrast# only Z~q T+bCRj~q (1)/Rq()

appears in Y oand Ytl'0 equations (2m,84) and (2w-93),9 for wide-

angle cones. In dissipative mediao R--(eM and R qa) are no

longer complex conjugates of each other and the asymptotic series
for R 4q (E) always starts working earlier, i~e. for smaller 11f

than the as~paptotic series for R 3g(j)# The separating region

becomes wider as the dissipation~ increases. At the same time,
the convergent aeries for R Q converges faster and works

farther than the convergent series for R2q(!)* Therefore, the

evaluation of R14(t) and Zthrough

Rlq(t) - Ai3R-q(f) + A Mfq1)

as well as the evaluation of Rq()an Z+trog

RAM AR ~(0l+A 2RqL

become critical in the intermediate region, making the evaluation

of Xless accurate for thin cones. The former difficulty is also

-the reason for not extending the curves for thin cones as far as

for widemangle cones, especially in Cases IV and V; the series

for R3 (1) can not be used yet. These remarks do not apply in the

real case. R4q~t = 4 Rq(4 are complex conjugates of each other,

as will be seen In Chapter 1# PART 11., Thus, R() isntataly
Involved.II
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If the variations of t(x) are still sharper, no overlapping

region may exist, If one is interested in lengths t failing in

the region where neither the convergent series work, nor the
asymptotic are valid, one should try to develop better convergent

series (such possibilities exist as will be seen in Chapter 1,
PART 11), or else use either analytic continuation or numerical
integration of the differential equation The author prefers

analytic continuation to: numerical integration.

The overlapping region between convergent and asymptotic

expressions of the functions narrows and the accuracy in this

region worsens as the order v or q of the functions increases.

The same is true regarding the accuracy with which the coeffi-
cients A41 , A42 etc., of the asymptotic expansions (1a-52) and
(1-53) are evaluated. Fortunately, as the order increases, the

effect of the higher-order modes on the final results diminishes

and the restrictions of accuracy can be relaxed progressively.

The preceding remarks show that the accuracy of Ri and X-

is not the same for all values of t in a given case. It may

also differ from thin to wide-angle cones in the same medium.

The variation in accuracy increases the sharper the stratification

function becomes.

Case I was chosen to check the theory by comparison with
available results in the homogeneous case (5 p. 837, 15).

Comparing with the results plotted in figures (3-3) and (3--4),

we observe a remarkable agreement. For 10 and 20, the

"peculiar" behaviour of Ri at the second and third maximum and of

X1 nearC= 9 is reproduced here in almost identical form (5 p.

837). The same is true about the behaviour of Rio and X around

their maxima for e0= 550 and 700 (!5). In case I, 20 higher order

terms were retained, iee. terms up to and including q - 39 were

kept, The accuracy for R and X is of the order of 0.l7 , even
better for small t. In the impedace transformation from Yto

Zi, through equation (2-45), both expressions (2-12) and (2-19)



for Ro(x) were used, yielding identical results. The former, in
terms of the asymptotic series (2-4) and (2i0), worked very well

in Case , In all other Cases II to VI, (2-i9) together With

(2-16) and (2-7), worked better and was used.
For e0o 39.230, the difference between Z and Z1i, as seen

in figure (3-4) j is very small for 4*4 Thus, f or wide-angle

cones, Zo is a good approximation to 2 for such lengths.

_However, for - 44 the difference is large, becoming larger as

decreases, in contrast to the homogeneous case where this

difference is small up to t = 0 (6 pp. 41"43, 13, 15). The reason
for this disagreement was explained in the last subsection of the
precedirn g chapter. One must keep more internal TM modes when

t<4 and solve the system of equations (2-57),(2-58) separately

for each t. This holds for G0  300, 550, 700 and all values Of 0

in this range. Zio, as plotted in figure (3-4), is only a rough

approximation to z for 6<4. The same must be said about Z
since values of Z12 or Z,3 are not available for comparison.

The number of higher modes retained in Cases II to VI was

restricted by the accuracy, with which the coefficients A4, A1 3
etc.0, of the asymptotic expansions (1-52),(1-53) could be

evaluated. With an 8-decimal machine precision, beyond a certain

qa (which decreases as the stratification becomes sharper), it

was not possible to evaluate these coefficients with any reason-

able accuracy. This restriction was mentioned previously. it did

not prove to be a serious problem in the cases investigated in
this research. For sharper stratifications one can use double

precision arithmetic, if it proves necessary. Beyond a certain

to the asymptotic series for R4 (L) can be used for the directthet
evaluation of Z /Y -- R()' ( For wide-angle

-q a 4q I4q 1)evalu at i s on of X

cones, that is all that is necessary for the evaluation of
an YtI according to (2 -4) and (2-93). it was observed that for

such , in general. ZIo or Z1 were sood approximations to Zi.
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Since the aoeff iients A14 , All etc., are not involved any more,

the number of terms retained can be Increased at will to yield
the required accuracy for such . In Cases II to V, 20 terms, up
to and including q±39, were retained in this region.

We give below qmax' the order of the highest mode retained

for thin cones and wide-agle cones of short length.

Case II : 33

Case I II: qmax27

Case IV : %max= 21

Case V % iax= 23

Case VI : qmax 1

Note how qmax drops in Cases IV and V, characterized by a sharper
stratification. The accuracy of the final results is better than

17 in Cases II, I, VI, about i%7 in Cases IV and V. it improves

for small t and, for wide-angle cones, beyond a certain f, after

which it was possible to retain more modes, as explained previous-

ly. For thin cones, in Cases IV and V, the accuracy becomes worse

than 1% in the region extending roughly between C =3.4 and t=4.2
for reasons explained previously. Beyond C = .2 it improves, as the
asymptotic series for R4 (T) becomes more accurate

in general, as far as the accuracy of the final results is

concerned, the number of modes retained is not as critical as the

accuracy with which the functions are evaluated. In Case I, even

with 15 higher modes retained, no considerable change occured in

the final results.

The difference Z1 o- Z for e0 -39e230, figures (3-12) to
(3-16), is small beyond t-4, but large for U( 4 for all Cases

II to VI. The same remarks as given for Case I, apply to these

cases as well.

The behaviour of Ri as (#-+0, is in conformity with the

approximate formulas (2-82) and (2-95). With no dissipation,
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Case I, Ri-O as t0. In dissipative media, Cases II to VI, it

goes to infinity and at a faster rate as the dissipation increases.

Concerning the more Important effects Of dissipation, we

observe the folowing. The oscillations of Ri and Xi versus e are
not displaced. The maxima and minila occur at almost the same

values of to quite independently of the profile of the stratifi-
cation. Even in Cases II, IV and VI, for example, characterized

by quite different Tp(x), the displacem;ents Of reSeonAne and antim-

resonance in Zi are negligible. Thus, even in stratified media,

the electrical length of the antenna is an important characteristic

quantity, determining its properties in a manner quite independent

of the mediuma

However, the oscillations are dumped as the dissipation

increases and Ri and X become almost constant beyond a certain

Value Of t. The effect is more pronounced and occurs at shorter

lengths for higher dissipations as well as for larger 0 These
effects have been observed experimentally in dissipative media

(14). By increasing the length of the antenna, we do not affect
the input current, hence Z,, because the current leaks into the

medium along the length of the antenna and quickly becomes

negligible away from the center. Beyond this point, additional

antenna length does not affect the current distribution.

For similar reasons, in stratified media the value of the

dissipation in the immediate vicinity of the antenna plays a

decisive role on its properties, the value of q away from the

center having practically no effect. Such effects have been

observed experimentally (14). They can be seen very clearly here,

comparing Case VI with the rest. Looking at figure (3t!)p we see

that medium VI is less dissipative, overall, than the media in

Cases IV or V, for instance. However, T(r) starts, at r=O9 from

a higher value in medium VI than in media IV and V. In the

immediate vicinity of the antenna, medium VI is more dissipative

than medium IV or V. The above-mentioned effects of dissipation
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are much more pronounced in Case VI than in any other case.

Another result in agreement with experiment (14), concerns

the final, almost constant, value of Xi for largoe e. xi s

inductive in this region, its value getting larger as the dissi-

pation increases. Compare Case VI, especially, with the rest.

The preceding observations show that, in dissipative media,

no additional useful information is gained by extending the

computations beyond the value of t, after which Z becomes

practically constant. Difficulties in evaluating R(-), R2(l)

and R3 (1) for large III, mentioned previously, are avoided, For
higher dissipations, the value of (, up to which the computations

must be carried, decreases.

As a final remark, we observe that the whole analysis is

based on the assumption that the stratification function f(r) can

be approximated by a certain functional dependence. In the light
of the results obtained, this assumption is justified. Cases II,

!I! and IV refer to media for which f(r) differs from case to

case, but not much and keeps the same general form, figure (3-1).
fiII iI fIV i ayigi
(r) varies in-between f(r) and f(r) So does Z , varying in

all cases and for all I in-between Z I- and ZIV and quite close

to them, figures (3-3) to (3-11). The same behaviour is observed

in Case I, if the comparison is made with homogeneous media for

which 6/eo 1 and 6/o= 1.2 f r) fcan be considered as an
00

approximation to these homogeneous media. One can also state that,

In a dissipative and stratified medium, the approximation of the

actual variation by the assumed f(r) must be better for small r

(i.e. in the immediate vicinity of the antenna) than for large r.

Even large discrepancies, occuring away from the center, will not

affect the results.
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